Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Adv Sci (Weinh) ; 10(13): e2207098, 2023 05.
Article in English | MEDLINE | ID: covidwho-2283513

ABSTRACT

Antivirals that can combat coronaviruses, including SARS-CoV-2 and associated mutants, are urgently needed but lacking. Simultaneously targeting the viral physical structure and replication cycle can endow antivirals with sustainable and broad-spectrum anti-coronavirus efficacy, which is difficult to achieve using a single small-molecule antiviral. Thus, a library of nanomaterials on GX_P2V, a SARS-CoV-2-like coronavirus of pangolin origin, is screened and a surface-functionalized gold nanocluster (TMA-GNC) is identified as the top hit. TMA-GNC inhibits transcription- and replication-competent SARS-CoV-2 virus-like particles and all tested pseudoviruses of SARS-CoV-2 variants. TMA-GNC prevents viral dissemination through destroying membrane integrity physically to enable a virucidal effect, interfering with viral replication by inactivating 3CL protease and priming the innate immune system against coronavirus infection. TMA-GNC exhibits biocompatibility and significantly reduces viral titers, inflammation, and pathological injury in lungs and tracheas of GX_P2V-infected hamsters. TMA-GNC may have a role in controlling the COVID-19 pandemic and inhibiting future emerging coronaviruses or variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptide Hydrolases , Pandemics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Endopeptidases
2.
Emerg Microbes Infect ; : 1-47, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2242884

ABSTRACT

SARS-CoV-2 related coronaviruses (SARS-CoV-2r) from Guangdong and Guangxi pangolins have been implicated in the emergence of SARS-CoV-2 and future pandemics. We previously reported the culture of a SARS-CoV-2r GX_P2V from Guangxi pangolins. Here we report the GX_P2V isolate rapidly adapted to Vero cells by acquiring two genomic mutations: an alanine to valine substitution in the nucleoprotein and a 104-nucleotide deletion in the hypervariable region (HVR) of the 3'-terminus untranslated region (3'-UTR). We further report the characterization of the GX_P2V variant (renamed GX_P2V(short_3UTR)) in in vitro and in vivo infection models. In cultured Vero, BGM and Calu-3 cells, GX_P2V(short_3UTR) had similar robust replication kinetics, and consistently produced minimum cell damage. GX_P2V(short_3UTR) infected golden hamsters and BALB/c mice but was highly attenuated. Golden hamsters infected intranasally had a short duration of productive infection in pulmonary, not extrapulmonary, tissues. These productive infections induced neutralizing antibodies against pseudoviruses of GX_P2V and SARS-CoV-2. Collectively, our data show that the GX_P2V(short_3UTR) is highly attenuated in in vitro and in vivo infection models. Attenuation of the variant is likely partially due to the 104-nt deletion in the HVR in the 3'-UTR. This study furthers our understanding of pangolin coronaviruses pathogenesis and provides novel insights for the design of live attenuated vaccines against SARS-CoV-2.

3.
J Med Virol ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2230866

ABSTRACT

Breast milk has been found to inhibit coronavirus infection, while the key components and mechanisms are unknown. We aimed to determine the components that contribute to the antiviral effects of breastmilk and explore their potential mechanism. Lactoferrin (Lf) and milk fat globule membrane (MFGM) inhibit SARS-CoV-2 related coronavirus GX_P2V and SARS-CoV-2 trVLP in vitro and block viral entry into cells. We confirmed that bovine lactoferrin (bLf) blocked the binding between human angiotensin-converting enzyme 2 (hACE2) and SARS-CoV-2 spike protein by combining receptor binding domain (RBD). Importantly, bLf inhibited RNA-dependent RNA polymerase (RdRp) activity of both SARS-CoV-2 and SARS-CoV in vitro in the nanomolar range. So far, no biological macromolecules have been reported to inhibit coronavirus RdRp. Our result indicated that bLf plays a major role in inhibiting viral replication rather than viral entry, which has been widely explored. bLf treatment reduced viral load in lungs and tracheae and alleviated pathological damage. Our study provides evidence that bLf prevents SARS-CoV-2 infection by combining SARS-CoV-2 spike protein RBD and inhibiting coronaviruses' RdRp activity, and may be a promising candidate for the treatment of COVID-19. This article is protected by copyright. All rights reserved.

4.
Microbiol Spectr ; 11(1): e0403022, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213894

ABSTRACT

In recent years, Stenotrophomonas maltophilia (S. maltophilia) has become an important pathogen of clinically acquired infections accompanied by high pathogenicity and high mortality. Moreover, infections caused by multidrug-resistant S. maltophilia have emerged as a serious challenge in clinical practice. Bacteriophages are considered a promising alternative for the treatment of S. maltophilia infections due to their unique antibacterial mechanism and superior bactericidal ability compared with traditional antibiotic agents. Here, we reported a new phage BUCT700 that has a double-stranded DNA genome of 43,214 bp with 70% GC content. A total of 55 ORFs and no virulence or antimicrobial resistance genes were annotated in the genome of phage BUCT700. Phage BUCT700 has a broad host range (28/43) and can lyse multiple ST types of clinical S. maltophilia (21/33). Furthermore, bacteriophage BUCT700 used the Type IV fimbrial biogenesis protein PilX as an adsorption receptor. In the stability test, phage BUCT700 showed excellent thermal stability (4 to 60°C) and pH tolerance (pH = 4 to 12). Moreover, phage BUCT700 was able to maintain a high titer during long-term storage. The adsorption curve and one-step growth curve showed that phage BUCT700 could rapidly adsorb to the surface of S. maltophilia and produce a significant number of phage virions. In vivo, BUCT700 significantly increased the survival rate of S. maltophilia-infected Galleria mellonella (G. mellonella) larvae from 0% to 100% within 72 h, especially in the prophylactic model. In conclusion, these findings indicate that phage BUCT700 has promising potential for clinical application either as a prophylactic or therapeutic agent. IMPORTANCE The risk of Stenotrophomonas maltophilia infections mediated by the medical devices is exacerbated with an increase in the number of ICU patients during the Corona Virus Disease 2019 (COVID-19) epidemic. Complications caused by S. maltophilia infections could complicate the state of an illness, greatly extending the length of hospitalization and increasing the financial burden. Phage therapy might be a potential and promising alternative for clinical treatment of multidrug-resistant bacterial infections. Here, we investigated the protective effects of phage BUCT700 as prophylactic and therapeutic agents in Galleria mellonella models of infection, respectively. This study demonstrates that phage therapy can provide protection in targeting S. maltophilia-related infection, especially as prophylaxis.


Subject(s)
Bacteriophages , COVID-19 , Moths , Stenotrophomonas maltophilia , Animals , Humans , Bacteriophages/genetics , Bacteriophages/metabolism , Stenotrophomonas maltophilia/genetics , Larva/microbiology , Anti-Bacterial Agents/pharmacology
5.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2143212

ABSTRACT

Coxsackieviruses, a genus of enteroviruses in the small RNA virus family, cause fatal infectious diseases in humans. Thus far, there are no approved drugs to prevent these diseases. Human milk contains various biologically active components against pathogens. Currently, the potential activity of breast milk components against the coxsackievirus remains unclear. In our study, the inhibitory effect of 16 major human milk components was tested on coxsackievirus class A type 9 isolate (CV-A9), BUCT01; 2'-Fucosyllactose (2'-FL) was identified to be effective. Time-of-addition, attachment internalisation assays, and the addition of 2'-FL at different time points were applied to investigate its specific role in the viral life cycle. Molecular docking was used to predict 2'-FL's specific cellular targets. The initial screening revealed a significant inhibitory effect (99.97%) against CV-A9 with 10 mg/mL 2'-FL, with no cytotoxicity observed. Compared with the control group, 2'-FL blocked virus entry (85%) as well as inhibited viral attachment (48.4%) and internalisation (51.3%), minimising its infection in rhabdomyosarcoma (RD) cells. The cell pre-incubation with 2'-FL exhibited significant inhibition (73.2-99.9%). Extended incubation between cells with 2'-FL reduced CV-A9 infection (93.9%), suggesting that 2'-FL predominantly targets cells to block infection. Molecular docking results revealed that 2'-FL interacted with the attachment receptor αvß6 and the internalisation receptor FCGRT and ß2M with an affinity of -2.14, -1.87, and -5.43 kcal/mol, respectively. This study lays the foundation for using 2'-FL as a food additive against CV-A9 infections.


Subject(s)
Coxsackievirus Infections , Enterovirus , Humans , Virus Attachment , Molecular Docking Simulation
6.
Int J Mol Sci ; 23(19)2022 Sep 24.
Article in English | MEDLINE | ID: covidwho-2043774

ABSTRACT

Coronaviruses as possible cross-species viruses have caused several epidemics. The ongoing emergency of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has posed severe threats to the global economy and public health, which has generated great concerns about zoonotic viruses. Swine acute diarrhea syndrome coronavirus (SADS-CoV), an alpha-coronavirus, was responsible for mass piglet deaths, resulting in unprecedented economic losses, and no approved drugs or vaccines are currently available for SADS-CoV infection. Given its potential ability to cause cross-species infection, it is essential to develop specific antiviral drugs and vaccines against SADS-CoV. Drug screening was performed on a total of 3523 compound-containing drug libraries as a strategy of existing medications repurposing. We identified five compounds (gemcitabine, mycophenolate mofetil, mycophenolic acid, methylene blue and cepharanthine) exhibiting inhibitory effects against SADS-CoV in a dose-dependent manner. Cepharanthine and methylene blue were confirmed to block viral entry, and gemcitabine, mycophenolate mofetil, mycophenolic acid and methylene blue could inhibit viral replication after SADS-CoV entry. This is the first report on SADS-CoV drug screening, and we found five compounds from drug libraries to be potential anti-SADS-CoV drugs, supporting the development of antiviral drugs for a possible outbreak of SADS-CoV in the future.


Subject(s)
Antiviral Agents , COVID-19 , Alphacoronavirus , Animals , Antiviral Agents/pharmacology , Methylene Blue , Mycophenolic Acid , SARS-CoV-2 , Swine
7.
MedComm (2020) ; 3(3): e172, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1999891

ABSTRACT

Since the start of the coronavirus disease 2019 (COVID-19) pandemic, new variants of severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) have emerged, accelerating the spread of the virus. Omicron was defined by the World Health Organization in November 2021 as the fifth "variant of concern" after Alpha, Beta, Gamma, and Delta. In recent months, Omicron has become the main epidemic strain. Studies have shown that Omicron carries more mutations than Alpha, Beta, Gamma, Delta, and wild-type, facilitating immune escape and accelerating its transmission. This review focuses on the Omicron variant's origin, transmission, main biological features, subvariants, mutations, immune escape, vaccination, and detection methods. We also discuss the appropriate preventive and therapeutic measures that should be taken to address the new challenges posed by the Omicron variant. This review is valuable to guide the surveillance, prevention, and development of vaccines and other therapies for Omicron variants. It is desirable to develop a more efficient vaccine against the Omicron variant and take more effective measures to constrain the spread of the epidemic and promote public health.

8.
Front Immunol ; 13: 896068, 2022.
Article in English | MEDLINE | ID: covidwho-1903022

ABSTRACT

During the global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pregnant and lactating women are at higher risk of infection. The potential of viral intrauterine transmission and vertical transmission by breastfeeding has raised wide concerns. Breastmilk is rich in nutrients that contribute to infant growth and development, and reduce the incidence rate of infant illness and death, as well as inhibit pathogens significantly, and protect infants from infection. Although it is controversial whether mothers infected with COVID-19 should continue to breastfeed, many countries and international organizations have provided recommendations and guidance for breastfeeding. This review presents the risks and benefits of breastfeeding for mothers infected with COVID-19, and the reasons for the absence of SARS-CoV-2 active virus in human milk. In addition, the antiviral mechanisms of nutrients in breastmilk, the levels of SARS-CoV-2 specific antibodies in breastmilk from COVID-19 infected mothers and vaccinated mothers are also summarized and discussed, aiming to provide some support and recommendations for both lactating mothers and infants to better deal with the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Antibodies, Viral , Breast Feeding , Female , Humans , Infant , Lactation , Pandemics/prevention & control , Pregnancy , SARS-CoV-2
9.
Signal Transduct Target Ther ; 7(1): 146, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1890151

ABSTRACT

With the constantly mutating of SARS-CoV-2 and the emergence of Variants of Concern (VOC), the implementation of vaccination is critically important. Existing SARS-CoV-2 vaccines mainly include inactivated, live attenuated, viral vector, protein subunit, RNA, DNA, and virus-like particle (VLP) vaccines. Viral vector vaccines, protein subunit vaccines, and mRNA vaccines may induce additional cellular or humoral immune regulations, including Th cell responses and germinal center responses, and form relevant memory cells, greatly improving their efficiency. However, some viral vector or mRNA vaccines may be associated with complications like thrombocytopenia and myocarditis, raising concerns about the safety of these COVID-19 vaccines. Here, we systemically assess the safety and efficacy of COVID-19 vaccines, including the possible complications and different effects on pregnant women, the elderly, people with immune diseases and acquired immunodeficiency syndrome (AIDS), transplant recipients, and cancer patients. Based on the current analysis, governments and relevant agencies are recommended to continue to advance the vaccine immunization process. Simultaneously, special attention should be paid to the health status of the vaccines, timely treatment of complications, vaccine development, and ensuring the lives and health of patients. In addition, available measures such as mix-and-match vaccination, developing new vaccines like nanoparticle vaccines, and optimizing immune adjuvant to improve vaccine safety and efficacy could be considered.


Subject(s)
COVID-19 Vaccines , Aged , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Female , Humans , Pregnancy , Protein Subunits , SARS-CoV-2/genetics , Vaccines, Virus-Like Particle
10.
Front Immunol ; 13: 855496, 2022.
Article in English | MEDLINE | ID: covidwho-1809400

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constitutes a major worldwide public health threat and economic burden. The pandemic is still ongoing and the SARS-CoV-2 variants are still emerging constantly, resulting in an urgent demand for new drugs to treat this disease. Molnupiravir, a biological prodrug of NHC (ß-D-N(4)-hydroxycytidine), is a novel nucleoside analogue with a broad-spectrum antiviral activity against SARS-CoV, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, respiratory syncytial virus (RSV), bovine viral diarrhea virus (BVDV), hepatitis C virus (HCV) and Ebola virus (EBOV). Molnupiravir showed potent therapeutic and prophylactic activity against multiple coronaviruses including SARS-CoV-2, SARS-CoV, and MERS-CoV in animal models. In clinical trials, molnupiravir showed beneficial effects for mild to moderate COVID-19 patients with a favorable safety profile. The oral bioavailability and potent antiviral activity of molnupiravir highlight its potential utility as a therapeutic candidate against COVID-19. This review presents the research progress of molnupiravir starting with its discovery and synthesis, broad-spectrum antiviral effects, and antiviral mechanism. In addition, the preclinical studies, antiviral resistance, clinical trials, safety, and drug tolerability of molnupiravir are also summarized and discussed, aiming to expand our knowledge on molnupiravir and better deal with the COVID-19 epidemic.


Subject(s)
COVID-19 Drug Treatment , Middle East Respiratory Syndrome Coronavirus , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/analogs & derivatives , Humans , Hydroxylamines , SARS-CoV-2
11.
Chin Med J (Engl) ; 133(9): 1051-1056, 2020 May 05.
Article in English | MEDLINE | ID: covidwho-1722622

ABSTRACT

BACKGROUND: Medicines for the treatment of 2019-novel coronavirus (2019-nCoV) infections are urgently needed. However, drug screening using live 2019-nCoV requires high-level biosafety facilities, which imposes an obstacle for those institutions without such facilities or 2019-nCoV. This study aims to repurpose the clinically approved drugs for the treatment of coronavirus disease 2019 (COVID-19) in a 2019-nCoV-related coronavirus model. METHODS: A 2019-nCoV-related pangolin coronavirus GX_P2V/pangolin/2017/Guangxi was described. Whether GX_P2V uses angiotensin-converting enzyme 2 (ACE2) as the cell receptor was investigated by using small interfering RNA (siRNA)-mediated silencing of ACE2. The pangolin coronavirus model was used to identify drug candidates for treating 2019-nCoV infection. Two libraries of 2406 clinically approved drugs were screened for their ability to inhibit cytopathic effects on Vero E6 cells by GX_P2V infection. The anti-viral activities and anti-viral mechanisms of potential drugs were further investigated. Viral yields of RNAs and infectious particles were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and plaque assay, respectively. RESULTS: The spike protein of coronavirus GX_P2V shares 92.2% amino acid identity with that of 2019-nCoV isolate Wuhan-hu-1, and uses ACE2 as the receptor for infection just like 2019-nCoV. Three drugs, including cepharanthine (CEP), selamectin, and mefloquine hydrochloride, exhibited complete inhibition of cytopathic effects in cell culture at 10 µmol/L. CEP demonstrated the most potent inhibition of GX_P2V infection, with a concentration for 50% of maximal effect [EC50] of 0.98 µmol/L. The viral RNA yield in cells treated with 10 µmol/L CEP was 15,393-fold lower than in cells without CEP treatment ([6.48 ±â€Š0.02] × 10vs. 1.00 ±â€Š0.12, t = 150.38, P < 0.001) at 72 h post-infection (p.i.). Plaque assays found no production of live viruses in media containing 10 µmol/L CEP at 48 h p.i. Furthermore, we found CEP had potent anti-viral activities against both viral entry (0.46 ±â€Š0.12, vs.1.00 ±â€Š0.37, t = 2.42, P < 0.05) and viral replication ([6.18 ±â€Š0.95] × 10vs. 1.00 ±â€Š0.43, t = 3.98, P < 0.05). CONCLUSIONS: Our pangolin coronavirus GX_P2V is a workable model for 2019-nCoV research. CEP, selamectin, and mefloquine hydrochloride are potential drugs for treating 2019-nCoV infection. Our results strongly suggest that CEP is a wide-spectrum inhibitor of pan-betacoronavirus, and further study of CEP for treatment of 2019-nCoV infection is warranted.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Cell Line , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Drug Approval , Humans , Pandemics , Pneumonia, Viral/diagnosis , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Viral Load , COVID-19 Drug Treatment
12.
J Hazard Mater ; 430: 128414, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1665174

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Plasma Gases , Animals , COVID-19/prevention & control , Disinfection , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
14.
Front Cell Infect Microbiol ; 11: 680127, 2021.
Article in English | MEDLINE | ID: covidwho-1412623

ABSTRACT

Since the first reported case caused by the novel coronavirus SARS-CoV-2 infection in Wuhan, COVID-19 has caused serious deaths and an ongoing global pandemic, and it is still raging in more than 200 countries and regions around the world and many new variants have appeared in the process of continuous transmission. In the early stage of the epidemic prevention and control and clinical treatment, traditional Chinese medicine played a huge role in China. Here, we screened out six monomer compounds, including artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide, with excellent anti-SARS-CoV-2 and anti-GX_P2V activity from Anti-COVID-19 Traditional Chinese Medicine Compound Library containing 389 monomer compounds extracted from traditional Chinese medicine prescriptions "three formulas and three drugs". Our discovery preliminary proved the stage of action of those compounds against SARS-CoV-2 and provided inspiration for further research and clinical applications.


Subject(s)
COVID-19 , SARS-CoV-2 , Artemether , Artemisinins , Artesunate , Chalcones , Diterpenes , Humans
15.
Brief Bioinform ; 22(2): 1378-1386, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1352117

ABSTRACT

Antiviral therapies targeting the pandemic coronavirus disease 2019 (COVID-19) are urgently required. We studied an already-approved botanical drug cepharanthine (CEP) in a cell culture model of GX_P2V, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related virus. RNA-sequencing results showed the virus perturbed the expression of multiple genes including those associated with cellular stress responses such as endoplasmic reticulum (ER) stress and heat shock factor 1 (HSF1)-mediated heat shock response, of which heat shock response-related genes and pathways were at the core. CEP was potent to reverse most dysregulated genes and pathways in infected cells including ER stress/unfolded protein response and HSF1-mediated heat shock response. Additionally, single-cell transcriptomes also confirmed that genes of cellular stress responses and autophagy pathways were enriched in several peripheral blood mononuclear cells populations from COVID-19 patients. In summary, this study uncovered the transcriptome of a SARS-CoV-2-related coronavirus infection model and anti-viral activities of CEP, providing evidence for CEP as a promising therapeutic option for SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Benzylisoquinolines/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Animals , Chlorocebus aethiops , Homeostasis , Humans , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL